Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 759-773, 2022.
Article in English | WPRIM | ID: wpr-929325

ABSTRACT

Tumor cells have unique metabolic programming that is biologically distinct from that of corresponding normal cells. Resetting tumor metabolic programming is a promising strategy to ameliorate drug resistance and improve the tumor microenvironment. Here, we show that carboxyamidotriazole (CAI), an anticancer drug, can function as a metabolic modulator that decreases glucose and lipid metabolism and increases the dependency of colon cancer cells on glutamine metabolism. CAI suppressed glucose and lipid metabolism utilization, causing inhibition of mitochondrial respiratory chain complex I, thus producing reactive oxygen species (ROS). In parallel, activation of the aryl hydrocarbon receptor (AhR) increased glutamine uptake via the transporter SLC1A5, which could activate the ROS-scavenging enzyme glutathione peroxidase. As a result, combined use of inhibitors of GLS/GDH1, CAI could effectively restrict colorectal cancer (CRC) energy metabolism. These data illuminate a new antitumor mechanism of CAI, suggesting a new strategy for CRC metabolic reprogramming treatment.

2.
Acta Pharmaceutica Sinica B ; (6): 378-393, 2022.
Article in English | WPRIM | ID: wpr-929301

ABSTRACT

The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.

3.
Acta Pharmaceutica Sinica B ; (6): 92-106, 2022.
Article in English | WPRIM | ID: wpr-929283

ABSTRACT

Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.

4.
Acta Pharmaceutica Sinica B ; (6): 50-75, 2022.
Article in English | WPRIM | ID: wpr-929281

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.

5.
Acta Pharmaceutica Sinica B ; (6): 1446-1468, 2021.
Article in English | WPRIM | ID: wpr-888814

ABSTRACT

The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.

6.
Acta Pharmaceutica Sinica B ; (6): 3244-3261, 2021.
Article in English | WPRIM | ID: wpr-922791

ABSTRACT

Major challenges for cancer treatment are how to effectively eliminate primary tumor and sufficiently induce immunogenic cell death (ICD) to provoke a robust immune response for metastasis control. Here, a self-assembled cascade bioreactor was developed to improve cancer treatment with enhanced tumor penetration and synergistic therapy of starvation, chemodynamic (CDT) and photothermal therapy. Ultrasmall FeS-GOx nanodots were synthesized with glucose oxidase (GOx) as template and induced by paclitaxel (PTX) to form self-assembling FeS-GOx@PTX (FGP)

7.
Acta Pharmaceutica Sinica B ; (6): 1117-1128, 2021.
Article in English | WPRIM | ID: wpr-881188

ABSTRACT

Hypertension is the largest risk factor for cardiovascular disease, the leading cause of mortality worldwide. As blood pressure regulation is influenced by multiple physiological systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of research into Mendelian forms of hypertension implicated alterations in the renal tubular sodium handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na-Cl cotransporter (NCC). Altered functions of the NCC have shown to have profound effects on blood pressure regulation as illustrated by the over activation and inactivation of the NCC in Gordon's and Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect the expression and activity of the NCC. In particular, NCC activity is controlled by phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected regulator of the NCC. In recent years, there have been considerable advances in our understanding of NCC control mechanisms, particularly

8.
Acta Pharmaceutica Sinica B ; (6): 2272-2298, 2020.
Article in English | WPRIM | ID: wpr-881111

ABSTRACT

Multiple cancer immunotherapies including chimeric antigen receptor T cell and immune checkpoint inhibitors (ICIs) have been successfully developed to treat various cancers by motivating the adaptive anti-tumor immunity. Particularly, the checkpoint blockade approach has achieved great clinic success as evidenced by several U.S. Food and Drug Administration (FDA)-approved anti-programmed death receptor 1/ligand 1 or anti-cytotoxic T lymphocyte associated protein 4 antibodies. However, the majority of cancers have low clinical response rates to these ICIs due to poor tumor immunogenicity. Indeed, the cyclic guanosine monophosphate-adenosine monophosphate synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS‒STING‒TBK1) axis is now appreciated as the major signaling pathway in innate immune response across different species. Aberrant signaling of this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection and cancers. In this perspective, we provide an updated review on the latest progress on the development of small molecule modulators targeting the cGAS‒STING‒TBK1 signaling pathway and their preclinical and clinical use as a new immune stimulatory therapy. Meanwhile, highlights on the clinical candidates, limitations and challenges, as well as future directions in this field are also discussed. Further, small molecule inhibitors targeting this signaling axis and their potential therapeutic use for various indications are discussed as well.

9.
Acta Pharmaceutica Sinica B ; (6): 220-236, 2019.
Article in English | WPRIM | ID: wpr-774975

ABSTRACT

Obesity is increasing in an alarming rate worldwide, which causes higher risks of some diseases, such as type 2 diabetes, cardiovascular diseases, and cancer. Current therapeutic approaches, either pancreatic lipase inhibitors or appetite suppressors, are generally of limited effectiveness. Brown adipose tissue (BAT) and beige cells dissipate fatty acids as heat to maintain body temperature, termed non-shivering thermogenesis; the activity and mass of BAT and beige cells are negatively correlated with overweight and obesity. The existence of BAT and beige cells in human adults provides an effective weight reduction therapy, a process likely to be amenable to pharmacological intervention. Herein, we combed through the physiology of thermogenesis and the role of BAT and beige cells in combating with obesity. We summarized the thermogenic regulators identified in the past decades, targeting G protein-coupled receptors, transient receptor potential channels, nuclear receptors and miscellaneous pathways. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of thermogenesis in energy homeostasis to the representative thermogenic regulators for treating obesity. Thermogenic regulators might have a large potential for further investigations to be developed as lead compounds in fighting obesity.

10.
Acta Pharmaceutica Sinica B ; (6): 844-861, 2018.
Article in English | WPRIM | ID: wpr-771128

ABSTRACT

The DNA topoisomerase enzymes are essential to cell function and are found ubiquitously in all domains of life. The various topoisomerase enzymes perform a wide range of functions related to the maintenance of DNA topology during DNA replication, and transcription are the targets of a wide range of antimicrobial and cancer chemotherapeutic agents. Natural product-derived agents, such as the camptothecin, anthracycline, and podophyllotoxin drugs, have seen broad use in the treatment of many types of cancer. Selective targeting of the topoisomerase enzymes for cancer treatment continues to be a highly active area of basic and clinical research. The focus of this review will be to summarize the current state of the art with respect to clinically used topoisomerase inhibitors for targeted cancer treatment and to discuss the pharmacology and chemistry of promising new topoisomerase inhibitors in clinical and pre-clinical development.

11.
Acta Pharmaceutica Sinica B ; (6): 260-280, 2017.
Article in English | WPRIM | ID: wpr-256756

ABSTRACT

Oral drug absorption is a process influenced by the physicochemical and biopharmaceutical properties of the drug and its inter-relationship with the gastrointestinal tract. Drug solubility, dissolution and permeability across intestinal barrier are the key parameters controlling absorption. This review provides an overview of the factors that affect drug absorption and the classification of a drug on the basis of solubility and permeability. The biopharmaceutical classification system (BCS) was introduced in early 90׳s and is a regulatory tool used to predict bioavailability problems associated with a new entity, thereby helping in the development of a drug product. Strategies to combat solubility and permeability issues are also discussed.

12.
Acta Pharmaceutica Sinica B ; (6): 363-373, 2016.
Article in English | WPRIM | ID: wpr-309946

ABSTRACT

The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites. Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic cations and anions. In the past two decades, substantial progress has been made in understanding the roles of transporters in drug disposition, efficacy, toxicity and drug-drug interactions (DDIs). In the kidney, several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs. These transporters are increasingly recognized as the target for clinically significant DDIs. This review focuses on the functional characteristics of major human renal drug transporters and their involvement in clinically significant DDIs.

13.
Acta Pharmaceutica Sinica B ; (6): 223-230, 2015.
Article in English | WPRIM | ID: wpr-310032

ABSTRACT

Nucleotide pools in mammalian cells change due to the influence of antitumor drugs, which may help in evaluating the drug effect and understanding the mechanism of drug action. In this study, an ion-pair RP-HPLC method was used for a simple, sensitive and simultaneous determination of the levels of 12 nucleotides in mammalian cells treated with antibiotic antitumor drugs (daunorubicin, epirubicin and dactinomycin D). Through the use of this targeted metabolomics approach to find potential biomarkers, UTP and ATP were verified to be the most appropriate biomarkers. Moreover, a holistic statistical approach was put forward to develop a model which could distinguish 4 categories of drugs with different mechanisms of action. This model can be further validated by evaluating drugs with different mechanisms of action. This targeted metabolomics study may provide a novel approach to predict the mechanism of action of antitumor drugs.

14.
Korean Circulation Journal ; : 863-870, 1998.
Article in Korean | WPRIM | ID: wpr-114175

ABSTRACT

BACKGROUND: Previous studies have indicated adenosine triphosphate (ATP) is as potent coronary vasodillator as adenosine (A). We designed this study to compare the vasomotion of coronary artery (CA) between the infusion of ATP and that of A (1). METHOD AND RESULTS: Ten patients with normal CA (6 male and 4 female) age ranging from 41 to 74 years (57+/-11) were studied at LAD and RCA for measurement of coronary flow reserve (CFR), time to maximum effect (Tmax), time to baseline (TBL) in CA during ATP and A infusion. Tmax was achieved earlier with ATP than A, and these results suggest that maximum vasodilation occurs faster with ATP. Side effect profile was similar in 2 patients with mild chest pain with ATP and A. CONCLUSION: Since it has appeared that vasodilatory effect of ATP was comparable to A which has been used in pharmacological stress test in many diagnostic modalities, ATP can be used safely in many clinical setting where A has been used.


Subject(s)
Humans , Male , Adenosine Triphosphate , Adenosine , Chest Pain , Coronary Vessels , Exercise Test , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL